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1. Introduction 
By now, you have been exposed to vectors in high school; however, some of you may have forgotten 

what was taught.  The Ontario High School Curriculum clearly lays out what is to be taught regarding 

vectors and their related operations.  This primer is meant to give all students the opportunity to catch up 

on what should have been taught in high school.  We will begin by looking at two-dimensional vectors 

and then extend this to three dimensions.  In your MATH 215 course, you will see how you can extend 

this to n-dimensional vectors and even infinite dimensional vectors; however, this primer will be 

sufficient for your first-year courses. 

2. Two-dimensional vectors 
We will begin with a definition and representation of a 2-dimensional vector and then look at some 

properties and operations on 2-dimensional vectors.  Two-dimensional vectors are easier to represent and 

visualize than 3-dimensional vectors, which will follow. 

2.1 Definition 
A two-dimensional vector is a pair of two real numbers, for example: 

3

5

 
 
 

 , 
5.2

13.7

 
 
 

 and 
0.5236

1.79

 
 
 

. 

A vector can be used to describe the coordinates of a point in a plane relative to a point called the origin 

(where x = y = 0).  For example, the first component, or coordinate, can represent the distance in the x 

direction, and the second is the offset in the y direction.  Therefore, the vector 
3.73

1.85

 
 
 

 may be displayed 

graphically as any one of the three shown in Figure 1.  The arrowhead is often referred to as the head of 

the vector while the other end, the base, is always at the origin.  While it may be visually appealing to 

think of vectors as arrows, it is better to think of them as points or coordinates on the plane relative to the 

origin. 

 

Figure 1.  Representing the vector 
3.73

1.85

 
 
 

. 
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A variable understood to be a vector can be expressed as either a boldface Roman letter, an underlined 

letter, or a letter with an arrow above it: 

v vv  

Textbooks tend to use the boldface variation while instructors will use one of the other two on the 

blackboard to differentiate vectors from variables representing, for example, real or complex numbers. 

In two dimensions, given a vector such as 
3.73

1.85

 
  
 

v , we will often refer to the first component as the x-

component and say that v1
 
= 3.73; and the second as the y-component and say that v2 = 1.85.  In general, if 

we have a vector, say u, we will write its components as u1 and u2, respectively; that is, 
def

1

2

u

u

 
  
 

u ; that is, 

a 2-dimensional vector u is by definition one that has u1 as the first component and u2 as the second. 

Textbooks tend to use italicized letters to represent the components of a vector. 

If you have labeled vectors such as u1, u2, …, un, the components are be referred to by adding a comma in 

the subscript.  Therefore, u1 has components u1,1 and u1,2, while  
def

,1

,2

k

k

k

u

u

 
  
 

u . 

Note:  You may be asking, what is the difference between a coordinate and a vector?  After all, are not 

points on the xy plane coordinates?  What makes a coordinate different from a vector? 

 

Essentially, a coordinate is an absolute location relative to some origin, so while one can discuss the 

distance between to coordinate points, it makes no sense to, for example, add two coordinates.  Indeed, all 

of Euclidean geometry is generated without reference to concepts such as adding to coordinates, or any 

other operations so commonly used with vectors.  A vector is a relative offset from an origin, and this 

relative offset has both magnitude and direction. 
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2.2 The length or norm of a vector 
The length or norm of a vector is the length of the line from the origin in the xy-plane.  For example, if 

a

b

 
  
 

u , we will represent the norm by u  and 

2 2a b u . 

If we don’t know the components, we would simply write 2 2

1 2v v v . 

For example, if 
3

4

 
  

 
u , then  

223 4 25 5    u .  In general, however, norms don’t always 

work out so easily:  if 
5.23

2.98

 
  
 

u , then  
2 25.23 2.98 36.2333 6.01941    u . 

Note:  there are other ways of measuring the norm of a vector.  Calculating the square root of the sum of 

squares can be called the “Euclidean norm” and the “2-norm”, and both are common.  We may also 

denote this norm using a subscripted two, as in 2 2

1 22
u u u .  The subscripted two simply identifies 

that we mean this definition of norm.  Later, you may square the norm, in which case, you will see the 

notation 
2 2 2

1 22
u u u .  To reinforce this, we will use the subscript-2 notation for the rest of this 

primer. 

 

Note:  we will always refer to the length of a vector as the norm of the vector.  This is because later, we 

will be looking at objects that behave just like the vectors we are looking at now, but where calling such a 

measure the “length” would not make any sense. 
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2.3 Unit vectors 
If the length of a vector is 1, it is said to be a unit vector.  Four obvious unit vectors are 

1

0

 
 
 

, 
0

1

 
 
 

, 
1

0

 
 
 

, and 
0

1

 
 
 

; 

however, any vector whose head lies on a circle around the origin of length 1, shown in Figure 2,  is a unit 

vector. 

 

Figure 2.  The unit circle around the origin. 

Examples of other unit vectors include: 

1

2

1

2

 
 
 
 
 
 

, 

3

5

4

5

 
 

 
  
 

, 

1

5

2

5

 
 
 
 
 
 

, and 
0.5324

0.8465

 
 
 

. 

Now, the last one is not exactly a unit vector because 0.5324
2
 + 0.8465

2
 = 1.00001201 and thus 

2 20.5324 0.8465 1.000006005  , which is not exactly equal to 1, but it is very close.  In engineering, 

we will often be using approximations. 
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Two very important unit vectors are given special names, 

1ˆ
0

 
  
 

i  and 
0ˆ
1

 
  
 

j , 

and together these are said to be the standard basis of the plane.  The hat sitting on top of the variables 

indicates that the vectors are meant to be of unit length.  These are shown in Figure 3. 

 

Figure 3.  The two forming the standard basis. 

Note that 
1

1

 
  
 

u  has 
2

2u , and so is not a unit vector. 

2.4 The zero vector 
One particularly special vector is the zero vector:  a vector where both components are zero.  This is often 

denoted using an appropriately accented zero: 

0
0 0

0

 
    

 
0 . 

2.5 Vector equality 

Two vectors are equal if both their components are equal, so 
3

4

 
 
 

 and 
3

5

 
 
 

 are considered to be 

different vectors even though the first component of each are the same. 
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2.6 Vector addition 
We add two vectors by adding their respective components.  Therefore, we would say that 

3 4 3 4 7

5 2 5 2 3

       
         

          
. 

Graphically, if 
3

5

 
  

 
u  and 

4

2

 
  
 

v , we could show such vector addition as shown in Figure 4. 

 

Figure 4.  Adding the vectors u and v. 

From the image, you may see that vector addition is commutative, that is, u + v = v + u. 

Note that for each vector v, there is a unique vector –v such that v + (–v) = 0; for example, 

3 3 0

5 5 0

     
      

     
. 

This is similar to each real number x being associated with its additive inverse where x + (–x) = 0; for 

example, 3.2 + (–3.2) = 0.  (Incidentally, the multiplicative inverse of a non-zero value of x is 1/x.) 

Some properties of vector addition are listed here: 

Property Expression Comment 

Commutativity u + v = v + u  

Associativity (u + v) + w = v + (u + w) It doesn’t matter in which order you add vectors. 

Identity element u + 0 = v for all v Adding the zero vector to any vector doesn’t change it 

 

Here is one place we can see how vectors differ from coordinates:  u + v says, what is the offset from the 

origin if you first take the offset u, and then, from that point,  offset v from that point, you get u + v.  

Consider this example:  take seven steps west and three steps north, and follow this by taking two steps 

east and another six steps north.  What is the final offset from the origin? 

The individual offsets are 
7

3

 
  
 

u  and 
2

6

 
  
 

v , respectively; the cumulative offset is 
5

9

 
   

 
u v . 
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2.7 Scalar multiplication 
We’ve seen previously that a vector can represent an arrow in the xy-plane.  One thing we may want to do 

is either stretch or shrink a vector.  For example, we may want to double the length of a vector, halve the 

length, or stretch it in the opposite direction.  In general, if we multiply a vector by a real number, we 

multiply each component by that real number, so if 
x

y

 
  
 

u , then 

x ax
a a

y ay

   
    

   
u . 

For example, if 
8

4

 
  
 

v , then 
16

2
8

 
  
 

v , 
41

0.5
22

 
   

 
v v , and  

8
1

4

 
     

 
v v .  These three 

scalar multiples are shown in Figure 5. 

 

Figure 5.  Three scalar multiples of a vector. 

Note that 
2 2

a au u ; that is, if we stretch a vector by a scalar a, then the length of the stretched 

vector au is a  times 
2

u .  Thus, if 
2

4.57u , then the 2-norm of –1.5u is 6.855; although, –1.5u, is 

pointed in the opposite direction of u. 

One scalar multiplication is so common, it is given a special notation: 

 1
x

y

 
   

 
u  

is usually denoted simply as –u.  Note that –u is the additive inverse of u, in the sense that u + (–u) = 0. 

Some properties of scalar multiplication include:  

Property Expression Comment 

Compatibility a(bu) = (ab)u 
The operations of scalar multiplication and the 

multiplication of real numbers is compatible. 

Identity element 1u = u Multiplying by 1 doesn’t change a vector. 

 

You may also deduce that 0u = 0 for all vectors u. 
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The operations of scalar multiplication also interact with the operations of vector addition: 

Property Expression Comment 

Distributivity a(u + v) = au + av 

It doesn’t matter whether you add vectors first and then 

multiply by a scalar, or multiply each by a scalar and 

then add. 

Distributivity (a + b)u = au + bu It doesn’t matter whether you add to scalars and then 

apply scalar multiplication, or if scalar multiplication is 

applied first and the two resulting vectors are added. 

 

One common approach is to write the vector ˆ ˆa
a b

b

 
  

 
i j .  Consequently, if ˆ ˆa b u i j  and ˆ ˆc d v i j , 

then    ˆ ˆa c b d    u v i j  and    ˆ ˆs sa sb u i j . 

2.8 The distance between vectors 
The distance between two vectors u and v is the length of the line segment that connects the two vectors.  

Note that u – v is the vector that can be added to v to get u, and therefore the distance between u and v 

may be calculated by 
2

u v .  Note also that u – v  = –(v – u), so 
2 2

  u v v u . 
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2.9 Normalizing a vector 
For every vector v other than the zero-vector 0, there is a unit vector which points in the same direction as 

v.  This vector is the normalized vector of v.  The normalization of v is sometimes represented as either v̂  

or v̂ , and we call it vee hat.  We can find the normalization of v by multiplying a vector v by one over the 

norm of v, and this can be written as: 

2 2

1
ˆ v̂  

v
v v

v v
. 

Notice that this is okay:  the norm 
2

v of a vector is a real number, or a scalar.  Thus, 

2

1

v
 is also a 

scalar, so 

2

1
v

v
 simply multiplies each component of v by the scalar 

2

1

v
. 

For example, if 
3

4

 
  
 

u , then 

2

3

1 1 5
ˆ

45

5

 
 

    
 
 
 

u u u
u

. 

Similarly, if 
4.065

2.139

 
  

 
v , then    

2 2

2
4.065 2.139 4.593    v  and therefore 

2

4.065

4.593 0.8851 1
ˆ

2.139 0.4684.593

4.593

 
         
   
 
 

v v v
v

. 

Notice that 21.099546 4.593 , so we only say that it is approximately equal to, and even 

4.065
0.885

4.593


  , so again we use “  ” instead of “=”.  We will see more about numerical 

approximations and numerical methods in second year. 
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2.10 Orthogonal vectors 
Notice that if we draw two vectors in the plane, there is always one angle that is 180 degrees ( radians) 

or less, as is shown in Figure 6.  Angles are often represented by the Greek letter “theta” or . 

 

Figure 6.  The angles between two vectors. 

Two vectors are said to be at right angles to each other, or orthogonal to each other if the angle between 

them is 90 degrees or 
2


 radians.  Two such examples are shown in Figure 7. 

 

Figure 7.  Two pairs of vectors that are orthogonal to each other. 

Vectors that are at right angles to each other are very important, and we will see a means of detecting if 

vectors are orthogonal. 

Note:  the expression “u is orthogonal to v” is equivalent to the expression “u and v are orthogonal”. 
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Some observations: 

1. Given a vector 1

2

u

u

 
  
 

u , both 2

1

u

u

 
 
 

and 2

1

u

u

 
 
 

 are orthogonal to u.  Consider, for example, the 

purple vector in Figure 8, and the two vectors orthogonal to it. 

 

Figure 8.  The vector u and two vectors orthogonal to it. 

2. If u is orthogonal to v then any scalar multiple of u is orthogonal to any scalar multiple of v; that 

is, au is orthogonal to bv for any real values a and b. 

3. The zero vector 0 is orthogonal to all vectors. 
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2.11 Dot product or inner product 
You might have already noticed that we can multiply a vector by a real number (a scalar), but does it 

make any sense to multiply a vector by a vector?  For example, if 
a

b

 
  
 

u  and 
c

d

 
  
 

v , should we define 

ac

bd

 
  
 

uv ?  For some engineering applications, such a definition is useful (and call it piecewise 

multiplication, as we are multiplying each piece or component of the two vectors), but for linear algebra, 

it doesn’t make much sense, so we will in general not define such an operation. 

Instead, there is a far more important operation which you will use throughout your undergraduate career 

and throughout your professional life (even if you don’t know it!), the dot product or inner product: 

If 
a

b

 
  
 

u  and 
c

d

 
  
 

v , we define 

, ac bd   u v u v . 

That is, we multiply the components, and then add these products. 

Some properties of the inner product: 

Property Expression Comment 

Commutivity   u v v u  
This is slightly different if we have complex numbers 

instead of real numbers as scalar values. 

Linearity 
 

   a a

     

  

u v w u w v w

u v u v
 

Linearity is a property you will see often in linear 

algebra and in almost all future engineering courses. 

Positive definiteness 
0 0 0  and 0 u u for 

all other vectors u 
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2.12 The relationship between the 2-norm and the inner product 

Notice that if 
a

b

 
  
 

u , then 

2 2

2
, a b    u u u u u  

and 

2 2 2

2
, a b    u u u u u . 

More generally, if  is the angle between the two vectors u and v, then 

 
2 2

, cos   u v u v u v . 

To visualize this, consider the diagram in Figure 9 containing vectors 
a

b

 
  
 

u  and 
c

d

 
  
 

v . 

 

Figure 9.  Two vectors, the corresponding right-angled triangles, and the various angles and lengths. 

From trigonometry, you know that sine is opposite over the hypotenuse and cosine is the adjacent over 

the hypotenuse.  Additionally, we know that          cos cos cos sin sin        , cosine is even 

(that is, cos(–x) = cos(x)), and sine is odd (that is, sin(–x) = –sin(x)).  Thus, we may find that 

   

       

2 2 2 2 2 2 2 2

cos cos

cos cos sin sin

cd ab

ab cd ab cd

b d a c

a b c d a b c d

  

   

 

 

 
   
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Now, multiply both sides by the common denominator: 

 2 2 2 2 cosa b c d bd ac     

and we quickly see that this is identical to 

 
2 2

cos   u v u v . 

2.13 The relationship between orthogonal vectors and the inner product 
Now we come to one very important observations:  two vectors are orthogonal to each other (that is, they 

are at 90 degrees or at right angles to each other) if and only if the inner product is zero.  Some examples: 

1. If 
3

5

 
  
 

u  and 
2

1

 
  
 

v , then  3 2 5 1 1       u v , so these vectors are not orthogonal. 

2. If 
1

2

 
  
 

u  and 
4

2

 
  

 
v , then  1 4 2 2 0      u v , so these vectors are orthogonal. 

3. If 
0.5323

0.9254

 
  
 

u  and 
0.8173

0.4701

 
  

 
v , then 0.00001825 u v , so while these vectors are vectors 

not orthogonal, one may argue that they are close to orthogonal.  
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2.14 The line of all orthogonal vectors 

Given a vector 
3

5

 
  

 
u , any other vector 

x

y

 
  
 

v  that is orthogonal to it must satisfy 

3x – 5y = 0. 

From high school, you will recall that this defines a line in the plane, and in this case, we can write that 

line as 
3

5
y x .  Thus, if x = 3.27, it follows that 

3.27

1.962

 
  
 

v  must be also orthogonal to u.  This vector 

u and the corresponding line are shown in Figure 10. 

 

Figure 10.  A vector and the line of all vectors orthogonal to it. 

Note that this line always passes through the origin.  Note also that in the special case where the second 

component is zero, for example, 
3

0

 
  
 

u , the line of all orthogonal vectors falls on the line x = 0. 

2.15 Summary of two-dimensional vectors 
This section defined and looked at various operations on two-dimensional vectors.  We defined the 2-

norm of a vector from which we introduced unit vectors.  Next, vector addition and scalar multiplication 

were defined followed by the normalization of non-zero vectors and the concept of the angle between 

vectors and orthogonality.  This was concluded by defining the inner product and relating the inner 

product to the previous concepts.  Next, we will consider three-dimensional vectors.  All the operations 

on three-dimensional vectors are analogous to operations on two-dimensional vectors, only we will add 

one more:  the cross product. 
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3. Three-dimensional vectors 
We will now look at vectors that represent points in space. 

3.1 Definition 
A three-dimensional vector is a sequence of three real numbers, for example: 

3

5

1

 
 
 
  

 , 

3.2

4.5

92.4

 
 
 

  

 and 

1

1

0

 
 
 
 
 

. 

The three components of a vector v may be referred to as v1, v2, and v3, respectively.  Every three 

dimensional vector represents a point in what we call three-space relative to an origin.  In the plane (also 

called two-space), it is usually to represent positive values of x to the right, and positive values of y up.  In 

three dimensions, positive values of x are represented as pointing out of the plane, positive values of y to 

the right, and positive values in z up, as shown in Figure 11. 

 

Figure 11.  Representations of 2- and 3-space. 
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To draw vectors in three-space on a plane, we usually resort to using guidelines to suggest the depth of 

the vector.  For example, the vectors 

3

4

5

 
 

  
 
 

u  and 

2

5

3

 
 

  
  

v  may be shown as in Figure 12. 

 

Figure 12.  Giving depth to a vector in 3-space. 

3.2 The 2-norm of a vector 
The 2-norm of a vector in three space is the physical length of the vector: 

2 2 2

1 2 32
u u u  u . 

If there is no ambiguity, the 2-norm may be simply written as u .  Note that the “2” refers to squaring 

the components, summing them, and then taking the square root.  The “2” is not meant to suggest the 

dimension of the vector. 
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3.3 Unit vectors  
If the length of a vector is 1, it is said to be a unit vector.  Six obvious unit vectors are 

1

0

0

 
 
 
 
 

, 

1

0

0

 
 
 
 
 

, 

0

1

0

 
 
 
 
 

, 

0

1

0

 
 
 
 
 

, 

0

0

1

 
 
 
 
 

, and 

0

0

1

 
 
 
  

; 

however, any vector whose head lies on a sphere around the origin of length 1, shown in Figure 13,  is a 

unit vector. 

 

Figure 13.  The unit sphere around the origin in 3-space. 

Examples of other unit vectors include: 

2

7

6

7

3

7

 
 
 
 
 
 
  
 

, 

1

3

1

3

1

3

 
 
 
 
 
 
 
 
 

, and 

0.5324

0.3256

0.7813

 
 
 
 
 

. 

Again, the last one is only close to a unit vector as 0.5324
2
 + 0.3256

2
 + 0.7813

2
 = 1.00000130 and 

2 2 20.5324  0.3256  0 1.. 078 0013  00064   . 

The standard basis for 3-space is: 

1

ˆ 0

0

 
 

  
 
 

i , 

0

ˆ 1

0

 
 

  
 
 

j , and 

0

ˆ 0

1

 
 

  
 
 

k . 

and together these are said to be the standard basis of the plane.  These are shown in Figure 14. 
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Figure 14.  The two forming the standard basis. 

3.4 The zero vector 
The zero vector is as one would expect in three dimensions: 

0

0 0 0

0

 
 

    
 
 

0 . 

3.5 Vector equality 
Two 3-dimensional vectors are equal if all three components are equal.  That is u = v if and only if 

u1 = v1, u2 = v2, and u3 = v3.  

3.6 Vector addition 
We add two vectors by adding their respective components.  Therefore, we would say that 

1 1 1 1

2 2 2 2

3 3 3 3

u v u v

u v u v

u v u v

     
     

         
          

u v . 

3.7 Scalar multiplication 

As in two dimensions, scalar multiplication either stretches or shrinks a vector, 

1

2

3

au

a au

au

 
 

  
 
 

u  and the 

additive inverse of u is

1

2

3

u

u

u

 
 

   
  

u .  As before, 
2 2

a au u . 
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As in two dimensions, one common approach is to write the vector ˆ ˆ ˆ

a

b a b c

c

 
 

   
 
 

i j k . 

Consequently, if ˆ ˆ ˆa b c  u i j k  and ˆ ˆ ˆd e f  v i j k , then      ˆ ˆ ˆa d b e c f      u v i j k  and 

     ˆ ˆ ˆs sa sb sc  u i j k . 

3.8 The distance between vectors 

As in two dimension, the distance between two vectors u and v is 
2 2

  u v v u . 

3.9 Normalizing a vector 
As in two dimensions, we can normalize vectors by dividing by the 2-norm: 

2 2

1
ˆ v̂  

v
v v

v v
. 

For example, if 

4

8

1

 
 

  
  

u , then    
2 22

2
4 8 1 81 9      u  and 

2

4

9

1 1 8
ˆ

9 9

1

9

 
 
 
    
 
 
  
 

u u u
u

. 

3.10 Orthogonal vectors 
In general, two vectors that are not scalar multiples of each other define a plane in three space, and in this 

plane, we can find an angle between two vectors.  Like in two dimensions, if the angle is a right angle, the 

vectors are said to be orthogonal.  There are many more vectors that are orthogonal to a given vector in 

three space:  for example, any vector of the form 

0

y

z

 
 
 
 
 

 is orthogonal to the vector 

1

0

0

 
 
 
 
 

. 

3.11 Inner product 
The inner product of two 3-dimensional vectors u and v is defined as 

1 1 2 2 3 3, u v u v u v    u v u v . 

Without proof, as it is much more difficult to formulate than that for two dimensions, the inner product is 

still equal to  
2 2

, cos   u v u v u v , where  is the angle between the two vectors in 3-space. 
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3.12 The relationship between the 2-norm and the inner product 
As in two dimensions, 

2 2 2

1 2 32
, u u u     u u u u u  

and 

2 2 2 2

1 2 32
, u u u     u u u u u . 

3.13 The relationship between orthogonal vectors and the inner product 

As in two dimensions, two vectors u and v are orthogonal if and only if , 0  u v u v . 

3.14 The plane of all orthogonal vectors  

Given a vector 

3

5

2

 
 

  
 
 

u , any other vector 

x

y

z

 
 

  
 
 

v  that is orthogonal to it must satisfy 

3x – 5y + 2z = 0. 

From high school, you will recall that this defines a plane in 3-space, and in this case, we can write that 

plane as 
5 3

2 2
z y x  .  Thus, if x = 3.27 and y = 4.92, it follows that 

3.27

4.92

7.395

 
 

  
 
 

v  must be also 

orthogonal to u.  Note that this plane always passes through the origin. 
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3.15 Vectors in physics  
The use of vectors in physics is so ubiquitous that special conventions are used.  For example, if x and y 

are the position of two objects in 3-space, then the gravitational force exerted by the object at y by the 

object at x depends on the radius vector r = y – x shown in Figure 15. 

 

Figure 15.  The radius vector r = y – x. 

In this case, it is common to simply write 
2

r  as r; that is, r is the scalar that represents the distance 

between x and y.  Consequently, the gravitation force may be written as 

2

x ym m
F G

r
 . 

This force, however, has a direction, and to specify the direction, we will multiply by 

2

ˆ
r

 
r r

r
r

, which 

is therefore written as 

2 3
ˆx y x ym m m m

G G
r r

 F r r . 
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3.16 The cross product 
Consider any pair of vectors u and v that are not scalar multiples of each other.  We would like a 

mechanism of defining a third vector that is orthogonal to both of these vectors.  Without proof, we will 

claim that if we define 

2 3 3 2

3 1 1 3

1 2 2 1

u v u v

u v u v

u v u v

 
 

   
  

u v , 

then this vector is orthogonal to both u and v.  You can see that it is orthogonal: 

     
1 2 3 3 2

2 3 1 1 3 1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

3 1 2 2 1

1 2 3 1 3 2 2 3 1 2 1 3 3 1 2 3 2 1

1 2 3 1 2 3 1 3 2 1 3 2 2 3 1 2 3 1

0

u u v u v

u u v u v u u v u v u u v u v u u v u v

u u v u v

u u v u u v u u v u u v u u v u u v

u u v u u v u u v u u v u u v u u v

   
   

          
      

     

     



 

and you are welcome to convince yourself that the cross product dotted with v is also zero. 

We will conclude with an aide-mémoire for recalling the cross product, shown in Figure 16.  List the 

three standard basis vectors twice in the first row, and then write the components of u and v twice in each 

the second and third rows, respectively, and then add the product of the entries crossed in blue, and 

subtract the products in red: 

 

Figure 16.  An aide-mémoire for the cross product. 
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For example, the first blue arrows crosses the three entries 2 3
ˆu vi , and the last red arrow crosses the entries 

2 1
ˆu vk . Thus, we have the result 

     

2 3 3 1 1 2 3 2 1 3 2 1

2 3 3 2 3 1 1 3 1 2 2 1

2 3 3 2

3 1 1 3

1 2 2 1

2 3 3 2

3 1 1 3

1 2 2 1

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ

0 0

0 0

0 0

u v u v u v u v u v u v

u v u v u v u v u v u v

u v u v

u v u v

u v u v

u v u v

u v u v

u v u v

      

     

     
     

        
          

 
 

  
  

u v i j k i j k

i j k

 

For example, in order to calculate the cross product of the vectors 

2

3

4

 
 

  
 
 

u  and 

5

1

6

 
 

  
 
 

u , we create the 

above grid 

 

and thus our answer is 

           

     

ˆ ˆ ˆ ˆˆ ˆ3 6 4 5 2 1 4 1 2 6 3 5

ˆ ˆ ˆ18 4 20 12 2 15

ˆ ˆ ˆ14 8 13

          

     

  

i j k i j k

i j k

i j k

 

or 

3 6 4 1 18 4 14

4 5 2 6 20 12 8

2 1 3 5 2 15 13

        
     

          
              

. 
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Some properties of the cross product deal with the standard basis vectors are:   

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

    

    

    

i j k j i k

j k i k j i

k i j i k j

 

Other properties also include: 

Property Expression Comment 

Anti-commutitivity     u v v u  Scalar multiplication is commutative:  ab = ba.   

Linearity 
 

     a a a

     

    

u v w u w v w

u v u v u v
 

Again, linearity is a property you will see often in 

linear algebra and in almost all future engineering 

courses. 

 

In general, it can also be shown that 

 
2 2 2

sin  u v u v ; 

therefore, the angle between the vectors is 0 (they are scalar multiples of each other) if and only if the 

cross product is the zero vector.  Note that we do not require absolute values around the sin() as the 

angle between two vectors is always some value between 0 and . 

3.17 Right-hand rule 
You might be wondering which direction the cross product of two vectors goes.  The easiest way to us 

this is to use the right-hand rule.  With your right hand, hold your four fingers together and make your 

thumb perpendicular to them.  Now, point your four fingers in the same direction as u.  Next, rotate your 

hand so that you can curl your fingers toward the vector v through the plane defined by u and v so that 

your thumb continues to point in the same direction.  In this case, your thumb is pointing in the direction 

of u v . 

You will use the right-hand rule in other circumstances:  if your thumb is pointing in the direction of a 

current moving through a wire, any magnetic field will curl around the wire in the direction that your 

right hand would curl around your thumb.  This is shown in Figure 17. 
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Figure 17.  The right-hand rule, image by Benutzer:Schorschi2. 
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3.18 Summary of three-dimensional vectors 
We have looked at three-dimensional vectors and seen that they are very similar to two-dimensional 

vectors.  The only significant difference is that in three dimensions, we can define the cross product of 

two vectors and this will produce a third vector orthogonal to both of the first two vectors.  The next three 

sections include a look ahead to other concepts, using Matlab for doing mathematics and vectors, a 

summary sheet, and questions followed by answers. 

4. Looking ahead 
If you have time, ask yourself what a 4-dimensional vector would look like, or more general an n-

dimensional vector where n is any natural number. 

Also, recall that we defined vector addition and scalar multiplication.  You might want to consider two 

real-valued functions of a real value, f and g.  Given each of these, we define f(x) and g(x) to represent the 

function evaluated at the point x.  This is like a vector v where vk is the k
th
 component of v.  With two 

vectors, we can define u + v where the k
th
 component of this vector sum is uk + vk.  Similarly, we may 

define the function f + g, and this evaluated at x is defined as the sum of both f and g evaluated at x; that 

is, (f + g)(x) = f(x) + g(x).  Similarly, given a vector u, we can define au where the k
th
 component is auk.  

Similarly, we may define af where (af)(x) = af(x).  There is also a zero function f0 where f0(x) = 0 for all 

values of x.  We can define the additive inverse of a function f as (–f)(x) = –f(x).  Basically, this is a small 

hint that it appears that the same operations that work on vectors also work on functions.  You will look 

more into this later. 
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5. Matlab 

By the time you graduate, you will have learned the Matlab mathematical programming language.  This 

section is not required for first-year students, but some of you who are more keen may consider reading 

this section.   First, when you launch Matlab, you are confronted with an interpreter:  you will type a 

command and Matlab will execute the command.  Here, >> is the prompt, input is in black, comments in 

green, and output in cyan. 

>> 3 + 7*(4 + 3) - 4.5     % Matlab can be used as a fancy calculator 
  ans = 
     47.5000 
 
>> exp( -j*pi )            % e^x is represented by exp(x) 
  ans = 
    -1.0000 - 0.0000i 
 
>> j^2                     % if not used as variables, i == j == sqrt( -1 ) 
  ans = 
    -1 
 
>> sin( 3.2 )^2 + cos( 3.2 )^2   % it is aware of trig 
  ans = 
       1 
 
>> cos( pi ) 
  ans = 
      -1 
 
>> v = [3 5]'      % create a vector and assign it to the variable 'v' 
  v = 
       3 
       5 
 
>> u = [-2 3]' 
  u = 
      -2 
       3 
 
>> v + u           % add these two vectors 
  ans = 
       1 
       8 
 
>> 3.2 * u         % multiply the vector u by the scalar 3.2 
  ans = 
     -6.4000 
      9.6000 
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>> norm( u - v )         % calculate the distance between u and v 
  ans = 
      5.3852 
 

>> norm( u )             % calculate the 2-norm of u 
  ans = 
      3.6056 
 

>> norm( -4*u )          % calculate the norm of -4*u 
  ans = 
     14.4222 
 

>> 4 * norm( u )         % calculate 4 times the norm of u 
  ans = 
     14.4222 
 

>> z2 = zeros( 2, 1 )    % create the 2-dimensional zero vector 
  z2 = 
       0 
       0 
 

>> w = [-2 3]' 
  w = 
      -2 
       3 
 

>> u == w                 % compare the entries componentwise 
  ans = 
       1 
       1 
 

>> all( u == w )          % determine if u == v (1 is true, 0 is false) 
  ans = 
       1 
 

>> u = u/norm(u)          % normalize u 
  u = 
     -0.5547 
      0.8321 
 

>> v'*w 
  ans = 
       9 
 

>> w'*v 
  ans = 
       9 
 

>> u'*w 
  ans = 
      3.6056 
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>> % The angle between v and w is approximately 64.653824058053306 degrees 
>> % or 1.1284221038181517 radians 
>> norm( v ) * norm( w ) * cos( 1.1284221038181517 ) 
  ans = 
      9.0000 
 
>> format long            % we need to see more precision... 
>> % every result not assigned to something is assigned to the variable 'ans' 
>> ans                    
  ans = 
     9.000000000000002 
 
>> u = [1 2 3]'           % a three-dimensional vector 
  u = 
       1 
       2 
       3 
 
>> v = [4 3 -1]' 
  v = 
       4 
       3 
      -1 
 
>> u'*v                   % these vectors are not orthogonal 
  ans = 
       7 
 
>> cross( u, v )          % calculate the cross prouct 
  ans = 
     -11 
      13 
      -5 
 
>> w = cross( v, u )      % (u x v) = -(v x u) 
  w = 
      11 
     -13 
       5 
 
>> w'*v                   % u x v is orthogonal to both u and v 
  ans = 
       0 
 
>> w'*u 
  ans = 
       0 
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6. Summary Sheet 
 Two dimensions Three dimensions 

Definition 
1

2

u u
u

u

 
    

 
u , 

,1

,2

u u
k

k k k

k

u

u

 
    

 
u  

1

2

3

u u

u

u

u

 
 

    
 
 

u , 

,1

,2

,3

u u

k

k k k k

k

u

u

u

 
 

    
 
 

u  

2-norm 2 2

1 22
u u u  2 2 2

1 2 32
u u u  u  

Unit vectors 
2

1u  

Standard basis 
1ˆ
0

 
  
 

i , 
0ˆ
1

 
  
 

j  

1

ˆ 0

0

 
 

  
 
 

i , 

0

ˆ 1

0

 
 

  
 
 

j , 

0

ˆ 0

1

 
 

  
 
 

k  

The zero vector 
0

0 0
0

 
    

 
0  

0

0 0 0

0

 
 

    
 
 

0  

Vector equality 
u v  if and only if  

1 1u v  and 
2 2u v  

u v  if and only if  

1 1u v , 
2 2u v  and 

3 3u v  

Vector addition 
1 1

2 2

u v

u v

 
   

 
u v  

1 1

2 2

3 3

u v

u v

u v

 
 

   
  

u v  

Scalar multiplication 
1

2

au
a

au

 
  
 

u  

1

2

3

au

a au

au

 
 

  
 
 

u  

Distance between vectors The distance between u and v is 
2 2

  u v v u  

Normalization If u 0 , 

2

ˆ 
u

u
u

 

Inner product 
 

1 1 2 2

2 2

,

cos

u v u v



   



u v u v

u v
 

 

1 1 2 2 3 3

2 2

,

cos

u v u v u v



    



u v u v

u v
 

Orthogonality u and v are orthogonal if and only if 0 u v  

The inner product and 

         the 2-norm 2
 u u u  

Vectors orthogonal to a vector 

All vectors 
x

y

 
 
 

 orthogonal to u satisfy xu1 + 

yu2 = 0 and form a line passing through the 

origin perpendicular to u 

All vectors 

x

y

z

 
 
 
 
 

 orthogonal to u 

satisfy xu1 + yu2 + zu3 = 0 and form a 

plane passing through the origin 

perpendicular to u 

Cross product 
     (for 3-dimensional vectors only) 

 

 

2 3 3 2

3 1 1 3

1 2 2 1

u v u v

u v u v

u v u v

 
 

   
  

u v  

 
2 2 2

sin  u v u v  
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7. Questions for 2-dimensional vectors 
1. Determine the components of the following five vectors. 

 

2. Plot the following four vectors on the plane provided. 

1

2.8

3.4

 
  
 

u , 2

2.9

2.6

 
  

 
u , 3

1.1

1.7

 
  

 
u , 3

0

0.9

 
  

 
u . 

 

3. What is the 2-norm of each of the following vectors?  You may require a calculator. 

1

2

3

 
  
 

u , 2

2

1

 
  

 
u , 3

8

4

 
  
 

u , 4

2.1

1.3

 
  

 
u  

4. If the first component of a vector u is u1 = 0.532 and u is known to be a unit vector, what are the two 

possible values of the second component? 

5. Is it correct to say that for a 2-dimensional vector, 1 2
ˆ ˆu u u i j? 

6. Suppose that u is a 2-dimensional vector.  What happens if we define 1
ˆuv i ?  What can we say 

about the vector v in relation to the vector u? 

7. Is 0u = 0 for all vectors u? 
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8. Consider the vector 
x

x y

 
  

 
u .  For what values of x and y is this vector equal to 

1

3

 
  

 
v ? 

9. Consider the vector 
 

 

cos

sin





 
  
 

u .  For what values of  is this vector equal to 
0

1

 
  

 
v ? 

10. Calculate the sum 
3.7 2.5 5.2 4.5

4.2 1.3 1.3 2.1

        
         

        
. 

11. Calculate the sum 
3.7 4.5

0.9 0.1
4.2 2.1

   
   

   
 . 

12. Calculate the sum 
3.7 4.5

0.5
4.2 2.1

    
    

    
.  How would you describe this vector in relation to the two 

vectors being summed? 

13. What is the distance between the vectors 
3

6

 
 
 

 and 
2

4

 
 
 

? 

14. For which values of x is the distance between the two vectors 
3

6

 
 
 

 and 
5

x 
 
 

 equal to 3? 

15. Normalize the vectors 
5

12

 
 
 

 and 
8

15

 
 
 

. 

16. Find approximations of the normalization of the vectors 
4.3

2.5

 
 
 

 and 
5.3

2.8

 
 
 

. 

17. Find the inner product of the vector 
3

6

 
 
 

 with the vectors 
2

4

 
 
 

, 
1

5

 
 
 

 and 
0

6

 
 
 

. 

18. Are the following pairs of vectors orthogonal? 

3

6

 
 
 

 and 
2

1

 
 
 

, 
3

5

 
 
 

 and 
3

5

 
 
 

, 
3

0

 
 
 

 and 
0

1

 
 
 

 

19. For what values of x is the vector 
6

x 
 
 

 orthogonal to the vector 
3

6

 
 
 

? 

20. If 
5

12

 
  
 

u , what is u u ?  What is 
2

2
u ? 

21. What is the equation of the line orthogonal to the vector 
4

1

 
 
 

? 

22. What is the equation of the line orthogonal to the vector 
3

0

 
 
 

? 
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8. Answers to questions on 2-dimensional vectors 

1. 
1

4

2

 
  
 

u , 
2

3

0

 
  
 

u , 
3

2.5

3

 
  
 

u , 
4

4

3.5

 
  

 
u  

2.  

 
3. 3.6056, 2.2361, 8.9443, 2.4698 

4. The second component would be approximately 0.8467 or  –0.8467. 

5. Yes. 

6. The vector 1
ˆuv i  is the closest vector on the x-axis to the vector u. 

7. Yes. 

8. x = –1 and y =  –2. 

9.  can be equal to 
3

2
 , but it can also any value of the form 

3
2

2
n   for any integral value of n. 

10. 
0.5

2.1

 
 
 

. 

11. 
3.78

3.57

 
 
 

 . 

12. 
4.1

1.05

 
 
 

 is the vector lying half-way between the two given vectors. 

13. 29 5.3852  

14. 3 2 2 0.1716   and 3 2 2 5.8284  . 

15. 

5

13

12

13

 
 
 
 
 
 

 and 

8

17

15

17

 
 
 
 

 
 

. 

16. 
0.8645

0.5026

 
 
 

 and 
0.8842

0.4671

 
 
 

. 

17. 18, 27, 36 

18. Yes, no, and yes. 

19. x = 12 
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20. In both cases, 169 

21. y = 4x 

22. x = 0 
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9. Questions for 3-dimensional vectors 
1. What is the 2-norm of each of the following vectors?  You may require a calculator. 

1

2

2

1

 
 

  
  

u , 
2

4

5

6

 
 

  
 
 

u , 
3

0.2

0.5

7.0

 
 

  
 
 

u , 
4

4

0

8

 
 

  
 
 

u  

2. If the first two components of a vector u are u1 = 0.532 and u2 = 0.452 and u is known to be a unit 

vector, what are the two possible values of the third component? 

3. Is it correct to say that for a 3-dimensional vector, 1 2 3
ˆ ˆ ˆu u u  u i j k ? 

4. Suppose that u is a three-dimensional vector.  What happens if we define 1 2
ˆ ˆu u v i j ?  What can we 

say about the vector v in relation to the vector u? 

5. Is 0u = 0 for all 3-dimensional vectors u? 

6. Consider the vector 

x

x y

x z

 
 

  
  

u .  For what values of x, y and z is this vector equal to 

5.2

4.1

6.5

 
 

  
 
 

v ? 

7. Consider the vector 

   

   

 

cos cos

cos sin

sin

 

 



 
 

  
 
 

u .  For what values of  is this vector equal to 

0

1

0

 
 

  
 
 

v ? 

8. Calculate the sum 

3.2 5.2 4.7 5.2

4.7 1.2 0.2 4.7

1.3 0.5 0.5 1.5

        
       
          
               

. 

9. Calculate the sum 

2.3 9.8

0.9 0.5 0.1 0.7

6.9 8.5

   
   
    
      

 . 

10. Calculate the sum 

2.3 9.8

0.5 0.5 0.7

6.9 8.5

    
    
     
        

.  How would you describe this vector in relation to the two 

vectors being summed? 

11. What is the distance between the vectors 

1

4

5

 
 
 
 
 

 and 

5

6

8

 
 
 
  

? 

12. For which values of x is the distance between the two vectors 

3

2

4

 
 
 
  

 and 1

3

x 
 
 
  

 equal to 3? 

13. Normalize the vectors 

1

2

2

 
 
 
  

 and 

4

7

4

 
 
 
 
 

. 
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14. Find approximations of the normalization of the vectors 

3

4

6

 
 
 
  

 and 

2.1

1.3

1.7

 
 
 
  

. 

15. Find the inner product of the vector 

1

2

3

 
 
 
 
 

 with the vectors 

2

3

4

 
 
 
  

, 

0.3

0.7

0.5

 
 
 
  

 and 

0

0

1

 
 
 
 
 

. 

16. Are the following pairs of vectors orthogonal? 

17. For what values of x is the vector 6

2

x 
 
 
 
 

 orthogonal to the vector 

3

3

4

 
 
 
 
 

? 

18. If 

3

7

2

 
 

  
  

u , what is u u ?  What is 
2

2
u ? 

19. What is the equation of the plane orthogonal to the vector 

1

2

3

 
 
 
  

? 

20. What is the equation of the plane orthogonal to the vector 

3

2

0

 
 
 
 
 

? 

21. What is the cross product of the following pairs of vectors: 

3

2

1

 
 
 
 
 

 and 

3

2

1

 
 
 
 
 

, 

3

2

0

 
 
 
 
 

 and 

5

2

0

 
 
 
 
 

, 

1

2

3

 
 
 
 
 

 and 

2

4

6

 
 
 
 
 

 

  



 

41 

 

10. Answers to questions on 3-dimensional vectors 

1. 3, 77 8.7750 , 7.0207, and 8.9443. 

2. 0.7160 and –0.7160 

3. Yes. 

4. v is the closest point on the xy-plane to the vector u. 

5. Yes. 

6. x = 5.2, y = –9.3, and z = 1.3 

7. Consider the vector 

   

   

 

cos cos

cos sin

sin

 

 



 
 

  
 
 

u .  For what values of  is this vector equal to 

0

1

0

 
 

  
 
 

v ? 

8. Calculate the sum 

1.5

1.4

0.2

 
 
 
  

. 

9. Calculate the sum 

3.05

0.38

5.36

 
 
 
 
 

 . 

10. 

6.05

0.10

0.80

 
 
 
  

 and it is the midpoint between the two vectors. 

11. 209 14.4568  

12. 3 7  and 3 7  

13. 

1

3

2

3

2

3

 
 
 
 
 
 
  
 

 and 

4

9

7

9

4

9

 
 
 
 
 
 
  
 

. 

14. 

0.3841

0.5121

0.7682

 
 
 
  

 and 

0.7004

0.4336

0.5670

 
 
 
  

. 

15. –20, -2.6, 3. 

16. Are the following pairs of vectors orthogonal? 

17. 
26

3
  

18. Both are 62. 

19. 
1 2

3 3
z x y   
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20. 
3

2
y x   with z taking on all values; that is, 

3

2

x

x

z

 
 
 
 
 
 

. 

21. What is the cross product of the following pairs of vectors: 

4

0

12

 
 
 
  

, 

0

0

16

 
 
 
  

, and 

0

0

0

 
 
 
 
 
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